The Design Proposal Document – School Learning Management System
Introduction:
This design document covers the development of a secured learning management system for a school (Se-LMS). The Se-LMS will allow teachers, student and parents to view student data and assignment grades securely. The roles will be managed via an administrator (admin) user. Please use a connecting sentence for the below section(s) here.

Rationale
The application provides an essential, and expected solution to aid learning (DfE, 2024). Se-LMS, otherwise known as virtual learning environments, have been promoted in the UK over the last decade (Ofsted, 2014). The Department for Education (DfE) recognises the need for all schools to be able to provide high quality remote education, particularly for school closures and where a student is unable to attend, but able to learn (DfE, 2024).	Comment by Anupam.Mazumdar: Check the source.

System requirements and Specification
Users will log-in to the system using a secure password. The system will support the ability to turn security on and off. Users will be able to perform CRUD functions relevant to their roles. All appropriate legal frameworks, including GDPR will be observed. 	Comment by Anupam.Mazumdar: Provide the full form first as you are using for the first time.	Comment by Anupam.Mazumdar: Such as…..	Comment by Anupam.Mazumdar: How about requirements for the OS, CPU, RAM and disk space?

Functional requirements of the application
The Se-LMS will incorporate a number of components outlined by Patel, Gadhavi & Patel (2013):
· Administrators will be able to add new courses, manage or update existing courses, assign teachers to courses, register, view, and enrol students. 	Comment by Anupam.Mazumdar: Are they not going to have access to the students profile?
· Teachers will be able to upload course content, view student submissions, and assign grades . 	Comment by Anupam.Mazumdar: And feedback
· Students will be able to view course content, their own assignment grades, and submit work.
· All users will require secure account log-ins.
Legal requirements
The software will adhere to GDPR regulations regarding its processing of user data, as detailed in below:
‘Consent for the processing of the users’ personal information must be obtained from students aged 13 and over, while consent from parents must be obtained for those under 133’ (Calder, 2018).	Comment by Anupam.Mazumdar: 133????
To comply with article 5 of the GDPR (Calder, 2018), the following steps will be taken:
· Users’ personal data will not be shared with third parties, and the user will be informed on how their data will be used.
· Personal data will only be used to inform teachers of who their students are and how they are progressing.
· Only relevant student data will be collected to ensure the functionality of the Se-LMS: first and last names, age, assigned teacher, and assignment marks; and for teachers: first and last names, subject speciality.
· The above data will be updated when relevant. 	Comment by Anupam.Mazumdar: By who?
· When the student leaves the school, their data will be deleted.	Comment by Anupam.Mazumdar: Is the deletion process automatic or manual? If automatic, what is the process? If manual, who is responsible and when they will perform the delete operation?
· Security procedures will be followed to secure data processing.	Comment by Anupam.Mazumdar: Prove an appropriate name for example.
·
Security Requirements
Secure authentication will be achieved by implementing role permissions. For example, only admin users will be able to register new students (MITRE, 2017). In addition, user passwords are hashed before being compared to the record of hashed user passwords (Spraul, 2015). User’s attempts at inputting their passwords will also be restricted to protect against Brute Force Attacks (Spraul 2015).
Event monitoring will be enforced by logging attempts made by users to log-in as an administrator (Kellezi et al., 2021). SQL injection attacks will be protected against by ensuring that user input is sanitised and never used directly for database queries (Galluccio, et al, 2020). Denial of service attacks will be mitigated against by ensuring that regular expressions are not exploited, with correct sanitisation of user input implemented and input evaluation times handled appropriately (Larson, 2018).	Comment by Anupam.Mazumdar: How about MFA?

Tools and Technology

Version Control System Used: GitHub
A version control System is a collaborative platform used by developers to record and track modifications in source code. This helps software developers manage changes to the source code.

Static Analysis Tools used: Flake8	Comment by Anupam.Mazumdar: Say why a specific liner?
[bookmark: _gjdgxs]Static analysis is a process of examining the source code without executing the code. It helps to find out the weakness including programming errors, violation of coding standards and security vulnerability.Flake8 is one of the popular linter used in python developers.It checks the code against coding style(PEP8)

IDE used: Visual Studio	Comment by Anupam.Mazumdar: If IDE is VS, then say why VS briefly.
Integrated Development Environment (IDE) is a software application which includes tools for the developers to efficiently develop code. Visual studio comes with python extensions which include syntax autocorrecting,unit testing, git operation etc.

Libraries for encryption and testing.
For encryption, the app will use the ‘cryptography’ library which ensures that Flask session data is encrypted and therefore secure (Farmaan, 2024). The testing library will be ‘unit test’, as this allows for the development of tests that match complex, real-life scenarios (Pajankar, 2022).

Development Methodology
Traditional waterfall models demand thorough documentation, generally leading to a secure but inflexible development. The application will be developed using Secure Scrum which adheres to the Agile Manifesto, but incorporates additional security steps, monitored in the daily scrum meetings.

UML Models
UML diagrams can be found in appendix 1.

OSWAP Proactive Controls
The application will use OSWAP Level 3 Application Security Verification Standard (ASVS) requirements because sensitive data is held. The OSWAP top 10 secure coding strategies are (Pillai, 2017): 	Comment by Anupam.Mazumdar: Think about OSWAP security vulnerabilities prevention too (if possible).

	Strategy
	Impact

	Validate inputs
	Validating data from untrusted sources eliminates most vulnerabilities.

	Keep it simple
	Complex design increases the probability of security errors.

	Principal of least privilege
	All processes only have the privilege they need.

	Sanitize data
	Reduces the chances of SQL injections

	Authorise access
	Sensitive data is only accessed by those who need it.

	Perform effective QA
	Testing reduces risk.

	Practice defence in layers
	Reduces the impact of a single failure.

	Define security requirements
	Documented security requirements are used in updates.

	Model threats
	Anticipating threats ensures a proactive, secure development.

	Architect and design for security policies
	Consistent approach to security across the system.

Threat Modelling
Threats will be modelled using the STRIDE methodology.
	Threat
	Counter Measure

	Spoofing
	· Authentication
· Protect secret data
· Do not store secrets

	Tampering with data
	· Authorization
· Hashes
· MACs
· Digital signatures

	Repudiation
	· Timestamps
· Audit trails
· Digital signatures

	Information Disclosure
	· Authorization
· Encryption
· Do not store secrets

	Denial of Service
	· Authentication
· Authorization
· Throttling

	Elevation of privilege
	· Using lest privilege

	Determine threat profile after mitigations

	· Non mitigated
· Partially mitigated
· Fully mitigated

The DREAD model will be used to quantify the risk:
	Impact of Attack (0-10)
	High Score (10)

	Damage
	Destruction of system, data, or application unavailability.

	Reproducibility
	Attack is very easy to reproduce.

	Exploitability
	Attack via a web browser.

	Affected Users
	All users affected.

	Discoverability
	Vulnerability found in the web address bar.

Threat Level
	0-10
	11-24
	25-39
	40-50

	Low
	Medium
	High
	Critical

Conclusion
The design proposal will ensure secure development of the application, delivered through a Secure Scrum approach. Threat modelling and mitigation will ensure security and the legal frameworks, such as GDPR, will be observed.
Appendix 1 – UML Diagrams
1. Specification Class Diagram

2. Use/Misuse Case Diagram
[image: A diagram of a person's relationship

Description automatically generated]

3. Activity Diagram
[image: A diagram of a flowchart

Description automatically generated]
4. Sequence Diagram – without security
[image: A diagram of a security system

Description automatically generated]

5. Sequence Diagram – with security
[image: A diagram of security

Description automatically generated]
6. Denial of Service (DOS) attack - without security
[image: A diagram of a diagram

Description automatically generated]
7. Denial of Service (DOS) attack - with security
[image: A diagram of a login screen

Description automatically generated]

8. Brute force attack - without security
[image: A diagram of a diagram

Description automatically generated with medium confidence]

9. Brute force attack - with security
[image: A screenshot of a computer

Description automatically generated]
References
Calder, A. (2018). EU GDPR: A Pocket Guide, School’s edition. Cambridge: IT Governance Publishing. DOI: https://doi.org/10.2307/j.ctvvnfgq. 	Comment by Anupam.Mazumdar: List of references must be in alphabetical order.
Galluccio, E., Caselli, E. and Lombari, G. (2020). SQL Injection Strategies: Practical techniques to secure old vulnerabilities against modern attacks. Packt Publishing Ltd. DOI?
Kellezi, D., Boegelund, C. and Meng, W. (2021) Securing open banking with model-view-controller architecture and OWASP. Wireless Communications and Mobile Computing, (1): 1-13. DOI: https://doi.org/10.1155/2021/8028073.
Farmaan, M. (2004). Secure Flask Sessions with Encryption: A Step-by-Step Guide. Available from: https://rb.gy/z2z9ga [Accessed: August 26, 2024].
E. Larson. (2018). [Research Paper] Automatic Checking of Regular Expressions. IEEE 18th International Working Conference on Source Code Analysis and Manipulation (SCAM), Madrid, Spain, 2018. 225-234. DOI: https://doi.org/10.1109/SCAM.2018.00034.
MITRE. (2017). CWE VIEW: Weaknesses in OWASP Top Ten (2017). Available at: https://cwe.mitre.org/data/definitions/1026.html [Accessed 10 August 2024].
[bookmark: _30j0zll]Pajankar, A. (2022). Python Unit Test Automation. Berkeley, CA: Apress. DOI: https://doi.org/10.1007/978-1-4842-7854-3_3
Patel, C., Gadhavi, M., & Patel, A. (2013). A survey paper on e-learning based learning management Systems (LMS). International Journal of Scientific & Engineering Research (IJSER), 4(6), 171.
Pillai, A.B. (2017). Software Architecture with Python. 1st ed. Birmingham: Packt Publishing. DOI??
Spraul, V.A. (2015). How Software Works: The Magic Behind Encryption, CGI, Search Engines, and Other Everyday Technologies. San Francisco: No Starch Press. DOI??
Deligeorge, A. and Deligeorge, A. (2023). Omnivision Design. [online] OmnivisionDesign.com. Available at: HTTPS://WWW.OMNIVISIONDESIGN.COM/WHAT-IS-VERSION-CONTROL-SYSTEM-VCS-AND-ITS-BENEFITS/ [Accessed 28 Aug. 2024]

Soumya (2019). Version Control Systems. [online] Geeks for Geeks. Available at: https://www.geeksforgeeks.org/version-control-systems/[Accessed 28 Aug. 2024]

Dewhurst, R. (2013). Static Code Analysis | OWASP. [online] Owasp.org. Available at: HTTPS://OWASP.ORG/WWW-COMMUNITY/CONTROLS/STATIC_CODE_ANALYSIS [Accessed 28 Aug. 2024]

Amazon Web Services, Inc. (2024). What is an IDE? IDE Explained - AWS. [online] Available at: HTTPS://AWS.AMAZON.COM/WHAT-IS/IDE/#:~:TEXT=AN%20INTEGRATED%20DEVELOPMENT%20ENVIRONMENT%20(IDE [Accessed 28 Aug. 2024]

Codeacdemy. (n.d.). What is an IDE? [online] Available at: HTTPS://WWW.CODECADEMY.COM/ARTICLE/WHAT-IS-AN-IDE-IOS [Accessed 28 Aug. 2024]
Nat (2023). What is Flake8, and why should we use it? [online] Available at: Python Pandemonium. Available at: https://medium.com/python-pandemonium/what-is-flake8-and-why-we-should-use-it-b89bd78073f2.
‌

image1.png
ption and method siring names are used as
rguments to instantiate the object. These are then
inked within the input text, with brackets added to
‘methods and arguments incldued inside e g

menu = input(F"Select one of the following Options
petov:
{selt option_1[0]lowier() - seff option_1}
{self option_2(0] loveer()} - seif option_2}

i menu == self option_1[0]lovier():
selfmetnod_1(arg_1)

else: self option_2[0] lower():
selmetnod_2(arg_2)

<<Menu>>

+option_1:str
+option_2:str

+method_1:str

+method_2:str

| rarg_tste

‘Admin_menu

“option_3:str
+option_d:str
+option_5:str
+option_6:str
+option_7:str

+method_3:str
+method_4:str
+method_5:str
+method_6:str
+method_7:str

+arg_3str
+arg_4ssir
+arg_bisir
+arg_6isir
+arg_7isir

+arg_2:str

+show_menu()

= Login_menu

emalistr
+passwordstr

+password_attempt_countint

Security

-login_user(email,password)
+seciity_on()

+security_onbool

+authentication(email)

+authorisation(email)
+password_attempts_check(password_attempt_count)
+event_monitor(email, password_inpuf)
+sanitise_input(user_input)

+encrypt()

Student_menu

“option_3:str

+method_3str

+arg_3str

Teacher_menu

+option_3:sir
+option_4:str

+method_3'str
+method_4'str

+arg_3istr
+arg_distr

image2.png
Admin
~teacher_idslist
+students_ids st
+lesson_i

— =
<<User>>

“ogin_emailstr
+hashed_password:str
+user_typerstr
+useridint
+fname:str

+inamestr

+dob:date

+view_student_info(login_name)
+view_teacher{login_name)

Teacher

-assign_teacher(login_name)
~enrol_student(login_name)
~register_student(login_name)
~search_student(iname)
~search_teacher(iname)

1.0

-upload_course_content(course_name)
-assign_grade(grade)

Student
+teacher,
+lesson
~submit_work(new_course_content)
1.0 A

N

+lesson_i
+lesson_name:str

+lesson_description'str

+que:

+view_lesson(login_name)
+add Jesson(lesson_name)

+question_content:str

+delete_lesson(lesson_name)
+update_lesson(lesson_name)

+view_question(login_name)
+add_question(lesson_name)
+delete_question(lesson_name)
+update_question(lesson_name)

Answer

+answer_idint
+answer_contentstr

+view_answer(answer_id)
+add_answer(answer_id)
+delete_answer(answer_id)
+update_answer(lanswer,
+submit_answer(answer_id)

)

+view_answer(answer_id)
+add_answer(answer_id)
+delete_answer(answer_id)
+update_answer(ianswer_id)
+submit_answer(answer_id)

image3.png
ption and method siring names are used as
rguments to instantiate the object. These are then
inked within the input text, with brackets added to
‘methods and arguments incldued inside e g

menu = input(F"Select one of the following Options
petov:
{selt option_1[0]lowier() - seff option_1}
{self option_2(0] loveer()} - seif option_2}

i menu == self option_1[0]lovier():
selfmetnod_1(arg_1)

else: self option_2[0] lower():
selmetnod_2(arg_2)

<<Menu>>

+option_1:str
+option_2:str

+method_1:str

+method_2:str

| rarg_tste

‘Admin_menu

“option_3:str
+option_d:str
+option_5:str
+option_6:str
+option_7:str

+method_3:str
+method_4:str
+method_5:str
+method_6:str
+method_7:str

+arg_3str
+arg_4ssir
+arg_bisir
+arg_6isir
+arg_7isir

+arg_2:str

+show_menu()

= Login_menu

emalistr
+passwordstr

+password_attempt_countint

Security

-login_user(email,password)
+seciity_on()

+security_onbool

+authentication(email)

+authorisation(email)
+password_attempts_check(password_attempt_count)
+event_monitor(email, password_inpuf)
+sanitise_input(user_input)

+encrypt()

Student_menu

“option_3:str

+method_3str

+arg_3str

Teacher_menu

+option_3:sir
+option_4:str

+method_3'str
+method_4'str

+arg_3istr
+arg_distr

image4.png
Admin
~teacher_idslist
+students_ids st
+lesson_i

— =
<<User>>

“ogin_emailstr
+hashed_password:str
+user_typerstr
+useridint
+fname:str

+inamestr

+dob:date

+view_student_info(login_name)
+view_teacher{login_name)

Teacher

-assign_teacher(login_name)
~enrol_student(login_name)
~register_student(login_name)
~search_student(iname)
~search_teacher(iname)

1.0

-upload_course_content(course_name)
-assign_grade(grade)

Student
+teacher,
+lesson
~submit_work(new_course_content)
1.0 A

N

+lesson_i
+lesson_name:str

+lesson_description'str

+que:

+view_lesson(login_name)
+add Jesson(lesson_name)

+question_content:str

+delete_lesson(lesson_name)
+update_lesson(lesson_name)

+view_question(login_name)
+add_question(lesson_name)
+delete_question(lesson_name)
+update_question(lesson_name)

Answer

+answer_idint
+answer_contentstr

+view_answer(answer_id)
+add_answer(answer_id)
+delete_answer(answer_id)
+update_answer(lanswer,
+submit_answer(answer_id)

)

+view_answer(answer_id)
+add_answer(answer_id)
+delete_answer(answer_id)
+update_answer(ianswer_id)
+submit_answer(answer_id)

image5.png
View course/grades

Student
Threatens
Create assignments/ Threatens.
Upload content
Attacker
Threatens
Set assignment marks
Teacher
involves
Threatens
Manage teacher records
Tnvolves
Admin

Manage student records e

Involves

Involves

Involves.

rate of submission

image6.png
Choose Action 15
perform

v v v v L

Create assignments/

View course/grades Cmions Coment

(SIS | U | —

Request for valid Yes
usemanme and Has Authorization?
password

Has Authorization?)

Yes fias authorization’

Perform Request

Yes

Has Authorization?)

Has Authorization?)

No No No No No

Deny Request

image7.png
Without security

I User sends request |

Sends user request

Attacker can perform AP injection or Denial Of Service Attack

! Processes request

| roces
:4_
|
1
|
|
|
|
|

Provides requested datalresponse

Atacker can steal data

Provides confirmation of request |

image8.png
With Security

User sends
usemame and password

|
|
|
|
|
Encryption |
|
|
|
|

\

Sends encrypted user data

*

Rate Limiting

T
—_—

Authentication)

| Processes request if user data is accepted
proces

—

Provides encrypted requested datalresponse

|
|
|
|
|
|
|
|
|
|
|
|
|
|
r

Provides confirmation of request

|
|
1
|
! |
| | |
|
|

image9.png
Login screen
User

\Attackers evil regex i taking too long to evaluate

Attacker attempts DOS attack using evil regex.

Other users cannot access the system due to loss of processing
power.

R |

>

image10.png
Login screen
User

Attacker attempts DOS attack using evil regex.

Input santiser does not accept evil regex code

Other users can access the system as system logic does not
attempt to evaluate expression.

S

image11.png
AelServer

Attacker gains access to system via main interface.

Attacker performs brute force attack to guess password.

Attacker requests data via APL

request

Request processed

image12.png
AelServer

i Attacker performs brute force attack to guess password. ><

‘Security only allows 5 attempts then locks user out,

